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Several signal detection experiments are analyzed in terms of a

model that incorporates two distinct processes: an activation process and

a decision process. The activation process specifies the relation be-

tween external signal events and hypothetized sensory states of the

subject. The decision process specifies the relation between the

sensory states and the observable responses of the sUbject. The act iva-

tion process is assumed to be fixed throughout an experiment, whereas

the decision process is viewed as varying from trial to trial as a

function of the particular sequence of preceding events. The changes in

the decision process are governed by a simple stochastic learning mechanism,

and the experimental studies reported here are designed specifically to

test the adequacy of this and related representations.

1Support for this research was provided by the National Aeronauti.cs

and Space Administration.
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I. Introduction

This paper examines a model for choice behavior in a two-alternative

forced-choice detection task. The model is restricted to experimental situa

tions where the subject is given feedback on every trial regarding the

correctness of his response, and to situations with a simple outcome struc

ture. Thus, the model has a restricted range of applicability, but for

appropriately contrived experiments it appears to provide an accurate account

of the gross aspects of the data and certain se~uential effects. The model

represents a special case of a more general theory proposed by Luce (l963);

it is also very similar in most details to a model of forced-choice behavior

proposed by Atkinson (l963). The relation of the model considered here to

these other theories will be discussed later.

The model postulates that the observable relations between stimulus

events and responses are a product of two processes: an activation process

and a decision process. The activation process specifies the relation between

the external stimulus event and hypothetical sensory states of the subject.

The decision process specifies the subject's response in terms of his current

sensory state and information that he has ac~uired during the course of a

given experiment. Roughly speaking, the stimulus is fed into the activation

process which converts the pattern of external energy changes into sensory

information (sensory events); the decision process then operates on the

sensory information to determine a response.

In the literature on signal detection, some theories have assumed a

continuum of sensory states (Green, 196o; Swets, 1961; Tanner and Swets,

1954) , whereas others have argued for a finite representation (Atkinson,

Carterette and Kinchla, 1962; Fechner, l86o; Luce, 1963; Norman, 1964).

Further, some theories have assumed that the activation process is static
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over trials, whereas others have proposed that it varies within certain limits

from trial to trial as a function of immediately preceding events (Atkinson,

1963). One point of agreement among all theories is that the decision process

is dynamic, and may undergo change when the experimenter manipulates the

presentation schedule or outcome structure. However, for a given experimental

schedule, some theories treat the decision process as fixed (trial-wise inde

pendent), whereas others represent it as changing from trial to trial as a

function of the particular sequence of preceding events. This latter way of

representing the decision process is an important feature of the model con

sidered in this ,paper. The subj ect is viewed, as adopting a characteristic

pattern of decision making in each eXperimental situation by means of a simple

stochastic learning mechanism. The learning mechanism that will be examined

is similar to learning models proposed by Bush and Mosteller (1955).

As noted &bove, we shall only consider detection experiments involving

the two-alternative forced-choice design. Thus, there are two possible stimulus

presentations, one of which occurs on each trial: signal plus noise in the

first temporal interval and noise alone in the second interval, or noise

alone in the first interval and signal plus noise in the second interval,

After the stimulus presentation the subject responds "1" or "2" to indicate

which interval he believes is more likely to have contained the signal.

To make matters concrete we shall describe the experimental procedure

used in an acoustic experiment involving the two-interval forced-choice design;

data from this experiment will be presented later. Band-limited Gaussian

noise was presented binaurally in the subject's headphones throughout a test

session and the signal was a 1000 cycles per second sinusoidal tone; the

tone was presented for 100 m~lliseconds, including equal fall and rise times

of 20 milliseconds. The subject was seated before a display board. On each
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trial three lights flashed on briefly in succession: a red light, an amber

light, and another amber light. Each light was on for 100 milliseconds with a

500 millisecond delay between each successive on period. The red light was

simply a warning light, while the amber lights defined two observation inter~:

vals. The onset of the signal occurred simultaneously with the onset of one

of the amber lights. After the second amber light went off, the subject had

2.5 seconds to indicate his response by pressing a push button located under

the appropriate amber light. At the conclusion of the response period, a

green light flashed on for 700 milliseconds above the correct response button.

There was a 1.5 second intertrial period, thus each trial lasted for 6 seconds.

A typical experimental session ran from 300 to 500 trials (thirty to fifty

minutes).

With this experimental procedure in mind, let us introduce some notation.

The presentation of a signal plUS noise in the first interval and noise along

in the second interval on trial n will be denoted as 8
1

,and the presenta,n

tion of noise in the first observation interval followed by signal plus noise

in the second observation interval as 82 . Further, the subject's responses,n

will be denoted A
l,n

and A
2,n

to indicate which interval he reported

contained the signal on trial n. Finally,

occurrence of an event at the end of trial

E and E
l,n 2,n

n informing the

will denote the

subject that

stimulus Sl or 82 , respectively, was presented. Thus

S.
1.,n

~ the presentation of stimulus S.
1.

on trial n,

A.
J ,n

the occurrence of response A.
J

on trial n,

E
k,n

information event at the end of trial n indicating that

stimulus Sk was presented.

Each of the indices i" j, and k can take on the values 1 or 2.

In experiments of the type described above, the following variables can
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be manipulated: (a) physical parameters of the situation; (b) presentation

schedule of signals; (¢) information feedback; and (d) outcome structure.

The presentation schedule refers to the scheme used to generate the sequence

of stimuli. In general, experimenters have adopted a simple probabilistic

schedule for presenting stimuli; namely, to let the events Sl and S2

form a binomial sequence with parameter y. However, more complex schedules

have been used; e.g., the stimulus on trial n can depend on the stimulus

on trial n-k, the response on trial n-k', or both (Friedman and Carterette,

1964). Generally, an analysis of the simpler schedule is sUfficient for most

purposes. Manipulation of the physical parameters refers to any change in the

physical aspects of the experimental situation; in particular to changeS in

the level of the background noise and/or the level of the signal. The nature

of the information feedback may also be manipulated. In the experiment

described above, the subject was always given information regarding the

correctness of his response, but one can omit such information, or even give

false information. The last variable deals with the outcome structure of

the experiment. In general, the outcome structure of a psychophysical ex

periment is specified by giving the subject a payoff function; i.e., a list

of rewards and penalties that he receives depending on what he does under the

various stimulus conditions.

In this paper we shall refer to experimental manipulations that involve

all four of these variables, but by and large our analyses will be concerned

with a very special case of the two-alternative forced-choice design. The

presentation schedule will be a binomial sequence with a parameter y and

the outcome structure will involve no explicit payoffs. The subjects will

simply be instructed to make a correct response as often as possible. Further,

on each trial the subject will be given information regarding the correctness
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of his response.

The basic dependent variable is the probability of an A. response on
J

trial n, given that stimulus

by the matrix

S.
:L

occurred. The four.outcomes are represented

A A
l,n 2,n

S ~«A, Ie, ) h(A, Ie, J
P =

l,n ,D ,D ,D ,D (1)
-n S Pr(Al,nlS2 ,n) Pr(A2 ,nIS2,n)2,n

This matrix will be called the performance matrix. Note that the rows of the

matrix sum to one, for on every trial the subject makes either an Al or

A2 response. Thus, if one entry in a row is known, so also is the other.

Typically the performance matrix is specified by giving the entries in the

first column; namely pr(Al,nISl,n) and

the occurrence of an Al response to an

the occurrence of AI" response to an S2

Pr(Al IS2 ). In the literature
,D ,D

Sl stimulus is called a hit, and

stimulus is called a false alarm.------
We shall use this terminology, denoting them as H

n
and F .

n' i. e. ,

Pr(H )
n

Pr(F )
n

Pr(Al lSI)
,D ,D

= Pr (AI IS2 )
,D ,n

Fixing Pr(H )
n

and Pr(F ), then, completely specifies the performance matrix.
n

Other quantities of interest can be defined in terms of the hits and

false-alarms. Frequently ~e want to know the probability of an Al response

on trial n independent of the stimulus event; namely,

Pr(Al ) = Pr(H )Pr(Sl ) + Pr(F )Pr(s2 ),n n ,n n ,D

Also of interest is the probability of a correct response on trial n (which

we denote as C):
n

Pr(C ) = Pr(H )Pr(Sl ) + [1 -Pr(F )]Pr(S2 )
n n ,D n ,D
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II. Assumptions and Rules of Identification

Activation and Decision Processes

The model assumes that one and only one sensory state can occur on each

trial of the experiment. The sensory st.ates will be denoted as s s0' . l'

We do not suppose that the same sensory state necessarily

results whenever a particular stimulus is presented, but rather that the

state is determined by a random process. The activation process on trial

n of an experiment can be represented by the stochastic matrix

So sl s2 sx

Sl l(til
(n) (n) (n)alO all a12 alx

Aan
(n) (n) (n) (n)

S2 a20 a21 a22 a2x

where
(n)

a ..
lJ

denotes the probability of eliciting sensory state on

trial n given stimulus S.
l

on that trial. Similarly, the decision process

can be represented by the matrix

Al
A

2

So
fd (n) d(n)
I 01 02

sl
I (n) d(n)dll 12

D s2
d(n) d(n)

-n 2l 22

sx

where
(n)

d ..
lJ

is the probability of eliciting response A.
J

on trial n given

sensory state on that trial. Then, the performance matrix specified by

Eq. 1 is obtained by taking the product of the activation matrix and the
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decision matrix; i.e.,

PAD
-n -n-n

The model that we shall examine postulates three sensory states for the

two-alternative forced-choice task:

no detection

detection in observation interval 1

s2 ~ detection in observation interval 2.

Further, the activation process and the decision process are defined by the

following matrices:

a

a
(4)

D
~n

1 - p
n

a

There are several points to note about these matrices. First, the entries

in A
~n

are constants independent of the trial number; thus the sensory

process is assumed to be fixed over all trials of the experiment. In contrast,

the decision process may vary as a function of the trial number, and this

dependence is indicated by affixing the trial index n to p. Also, note

that sl can occur only if 8
1

is presented, and s2 can occur only if 82

is presented. Thus, these sensory states have an urtambiguousreTation to the

stimulus, since the signal event can be inferred with probability 1 when sl

or s2 occur. However, sensory state So is ambiguously related to the

stimUlUS, for it can occur following either signal event. The parameter a
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characterizes this stimulus ambiguity in the output of the sensory system.

Both loss of stimulus information due to external·noiseand loss due to

limitations on the resolving power of the sensory system are summarized in

the parameter 0. Thus 0 may be interpreted as a measure both of the

physical stimulus and of the subject's sensitivity; we shall refer to 0

as the sensitivity parameter.

The decision matrix D reflects the relative ambiguity of the sensory
-n

states. If the subject's instructions are to make an A.
l

response· given an

Si stimulus, then the correct response is completely determined when an sl

or sensory state occurs. However, the subject faces a dilemma if he must

make a response on the basis of sO; either stimulus could have evoked

so the subject needs some strategy by which he can resolve the ambiguity and

select a response. The ,quantity Pn is a measure of the subject's tendency

to resolve the ambiguity by making an Al response rather than an A2 ; Pn

will be referred to as the response bias on trial n .

. As indicated earlier, the parameter 0 represents the subject's sensi"

tivity to the signal and Pn is a response bias more or less under the

control of the subject. Of the experimental variables discussed earlier,

we assume that the presentation schedule, information feedback, and the

outcome structure influence p, but do not affect the value of the sensi
n

tivity parameter. Also, we assume that the sensitivity parameter for a given

subject is determined solely by the physical aspects of the experimental

situation. It is, of course, necessary to show experimentally that these

interpretations are correct, and to examine how the parameters o and

are related to the physical characteristics of a given experimental situation.

In order to see how the sensitivity parameter and the bias parameter

interact let us examine the relation between hits and false alarms as one or
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the other of these parameters is manipulated. Taking the product of the matrices

in Eqs. 4 and 5 yields the performance matrix

in the first column of P are as follows:
-n

P
-n for this model. The entries

Pr(H )
n

Pr(F )
n

~ (l-cr)p + cr
n

(l-cr)p
n

(6a)

(6b)

an exchange relation is established between

is manipulated,If the sensitivity parameter cr is held constant and

Pr(H )
n

Pr(F );
n

if one

probability is changed the other is also, and in a predictable way. To find

the e·quation of this relation, we eliminate Pn from Eq. 6 yielding

Pr(H ) ~ cr + Pr(F ) (7)n n

Thus, if cr is held constant (fixed signal and noise levels) and Pn is

forced to vary (manipulations in the presentation schedule, outcome structure,

etc.), the relation between hits and false alarms should be characterized by

a linear function with slope 1. Plots of the relation between Pr(H) and
n

Pr(F) under experimental conditions where the signal to noise ratio is held
n

fixed and other variables are allowed to vary are often referred to as receiver-

operating-characteristic curves, or more simply as ROC curves. Generally

Pr(F )
n

is plotted along the abscissa and Pr(H )
n

along the ordinate. When

this is the case, the theoretical ROC curve intersects the ordinate at a

point whose value is O', as goes from zero to one, a straight line is

traced from the point (0, 0) to the point (1 - 0, 1).

If is held constant and the sensitivity parameter changed, there is

a well-defined relation between hits and false alarms. Eliminating 0 from

Eq. 6 yields

Pr(H ) ~
n

1 -

10
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Plots of the relation between Pr(Ji )
n

and Pr(F )
n

when is constant

and a is varied are called iso-bias curves. As a goes from one to zero

we trace out an iso-bias curve that goes from the point (0, 1) to the point

Learning Process

As indicated earlier, an important feature of the present analysis is to

represent changes in the bias probabllity in terms of a learning process of

the type proposed by Bush and Mosteller (1955). We assume that the bias on

trial n+l is a linear function of its value on trial n. Specifically, if

So occurs and is followed by El (i.e., the experimenter informs the subject

that the signal was in the first interval) then Pn will increase. If

occurs and is followed by information event E2 , then will decrease.·

For all other contingencies no change will occur in Pn' These statements

can be summarized as follows:

(1-8)p + e, if s & Eln O,n ,n

Pn+l (1-8' )Pn' if s & E (9)°,n 2,n

Pn' otherwise,

where °< e, e' < 1. Justification for this equation is postponed until later.

We now want to derive an expression for the expected value of Pn as a

function of the presentation schedule and the sensitivity parameter. Recall

that 1 is the probability of an Sl signal event and 1 - a is the probability

of activating sensory state given either

pr(so· & El )
,D_ ,D

Pr(so & E2 ) ~
,D ,D

Pr(otherwise)

Hence

(1-1) (l-a)

a •

To compute the expected value of the bias probability on trial n+l, we simply

weight each of the possible outcomes listed in Eq. 9 by its probability of
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occurrence given above. That is, the expected value on trial n+l given a

y(l-a)[(l-a)p + e] + (l-y)(l-a)(l-e')p
n n

(1 - (l-a)[ey + e'(l-y)]}Pn + ey(l-a) •

fixed value on trial n is

+ ap
n

Without going into the mathematical details, it can be shown that in the

above equation can be replaced by its expected value. Consequently, we have

a linear first-order difference equation in E(p) whose solution is
n

E(p ) ~ p _ (p ~Pl)Gn-l
n COCO

where

G

y + (l-y)cp

1 (l-a)[ey+e'(l-y)]
(10)

and e'
cP ~ (f' Note that P which is

. 00'
lim E(p ), does not depend on the
n~co n

absolute values of e and e' but only on their ratio.

Combining the results in Eqs. 6 and 10 yields

Pr(H )
n

Pr(F )
n

a + (l-a)[p _ (p _Pl)Gn-lj
00 00

(l-a)[poo - (Poo-Pl)Gn-lj •

(lla)

(llb)

From these equations it is clear that hits and false alarms will depend on

Pl at the start of an experimental session; however, over trials the subject's

performance will change at a rate controlled by the quantity G and at

asymptote will be determined by a and p,
00

The change in performance pre-

dieted by Eq. 11 is a well-known experimental phenomenon. Generally, however,

most research workers have tended to ignore the changes that occur at the

beginning of an experimental session, and instead have concentrated on an

analysis of data after performance has settled down to a stable level. For

the experiments analyzed in this paper we shall adopt this policy; to do so

makes matters simpler because fewer parameters need to be estimated.
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Since asymptoti0 performan0e will be stressed in subsequent dis0ussions,

the following notation will be useful:

lim Pr(H) Pr(H)n-700 n

lim Pr(F ) ~ Pr(F)
D-7OO n

That is, asymptotic expressions will be indicated by simply deleting the

trial subs0ript. Making the appropriate substitutions in Eq. 11 yields

( (l-a)/
Pr H) ~ a + / + (l-/)~

Pr(F) ~ (l-a);
/ + (1-/ )~

(12a)

(12b)

Similarly, for the asymptotic proportion of correct responses we obtain

(see Eq. 3)

Pr(C) ~a + (l-/)(.l-a) + (1-a)/(2/-1)
/ + (l-/)~

And, for the asymptoti0 proportion of Al responses (see Eq~ 2)

Related Models

(14 )

The model des0ribed in this section is very similar to one proposed by

LU0e (1963). His artide presents a theory of signal detection that is appli-

cable to a wide range of experimental procedures including both yes-no and the

for0ed-choi0e designs. When the theory is applied to the two-alternative

forced-0hoice experiment a model is obtained that has four sensory states.

There are four such states, because it is assumed that in ea0h observation

interval a hypotheti0al event D or D will oC0ur; hen0e, for a two-interval

problem, the sensory states are the ordered pairs <J)D>, <J)D>, <DD>, and

<J)D>. The D event will 000ur with probability q when a signal is pre-

sented, and with probability . q"' when the signal is not presented. Further,

the subject always makes the A
l

response when <J)IT> occurs, never when

13



<DD> occurs, with probability v
n

when <DD> occurs, and another probability

when <DD> occurs. These assumptions can be represented in matrix form

as follows:

<DD> <DD> <DD> <DD>

sl ~~~' ~(l-~') (l-~)q' (l-~) (l-q' j
A =- q'q ~' (l-q) (l-q')~ (l-q') (l-q)s2

Al A
2

<DD> v I-vn n

<DD> 1 0
D =-n <DD> 0 1

<DD> LWn l-wn

Luce also postulates that the bias parameters v
n

and undergo trial-by-

trial changes of the form specified by E~. 90

When q' = 0 the event D will never occur in the absence of a signal,

and then the above matrices reduce to those presented in E~s. 4 and 5 with

Under these conditions Luce's model is precisely theandPn = wn

same as the one presented here. Although we will not present the analyses,

it can be shown that the fit of the model cannot be significantly improved

by letting ~' be nonzero for the data treated in this paper.

The model proposed here also is very similar to a special case of a theory

proposed by Atkinson (1963) and Atkinson, Carterette and Kinchla (1962). The

difference is that their bias process was formulated in terms of the multi-

element pattern model of stimulus sampling theory (Atkinson and Estes, 1963).

However, the two models make identical predictions for all of the statistics

analyzed in this paper, and differ only on certain predictions such as
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sequential statistics that depend on previous responses. It should be pointed

out that although both Luce's theory and Atkinson's reduce to essentially the

same model in the two-alternative forced-choice case, they make markedly

different predictions for yes-no experiments and for forced-choice experiments

with more than two intervals.

III. Data Analysis

We now examine data collected from eight subjects in the forced-choice

acoustic experiment described earlier. In this study the signal and noise

levels were held constant throughout the experiment and the subject was always

given information at the end of each trial regarding the correctness of his

response. The only experimental manipulation involved the use of three

different presentation schedules. The probability, y, of an Sl event took

on the following values:

Schedule A: y .25

Schedule B: y .50

Schedule C: y = .75.

Test sessions of 350 trials each were run on consecutive days. Each day a

subject ran on one of the three schedules for the entire session. In succes

sive 3-day blocks a subject ran one day on each of the three schedules; within

each 3-day block the order was randomly determined. The experiment involved

15 experimental sessions and therefore each schedule was run on five separate

days.

Table 1 presents the proportion of Al responses on both Sl and S2

trials over the last 250 trials of replications two through five of each

presentation schedule; thus each estimate is based on 250 x 4 = 1000 trials.

The first replication of each presentation schedule has been deleted, because

we view the SUbject as adapting to the detection task on early days of the
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Table 1

Predicted and Observed Proportions of Pr(H), Pr(F), Pr(C), and Pr(Al ')

(The observed proportions are in parentheses.)
-- _. .._._-, - -

Schedule A Schedule B Schedule C
Subject f-- - _. _..

Pr(H) Pr(F) Pr(C) Pr(A
l

) Pr(H) Pr(F) Pr(C) Pr (A
l

) Pr(H) Pr(F) Pr(C) Pr(A
l

)

1 I .601 .154 .785 .266 .744 .2')7 .724 .521 .877 .430 .800 .765
i (.622) (1.63) (.783) (.278) (,'7.14) (.260) (7 .27) ( .J+87) ( .890) ( .462) ( .802) (.783)

2 ! .543 .125 ·792 .229 .680 .262 .709 .471 .832 .414 ·771 ·727
i (.529) ( .136) ( .780) ( .234) ( .654) ( .249) (.702) ( .451) (.854 ) ( .397) ( .791) ( .740)
I

3 i .597 .106 .820 .229 .716 .225 .746 .470 .849 .358 .797 .726
i((626) ( .107) ( .826) (.237 ) (.707) ( .210) (.748) ( .1+59) ( .842) ( . 381~) (.786) (.728)

4 I .529 .127 .787 .227 .669 .267 .701 .468 .825 .424 .763 ·725
: (.517) ( ..122) ( .788) ( .221) ( .649) ( .242) ( .703) ( .1,46) ( .857) (.454) ( .779) (.756),

5 . i .520 .120 .790 .220 .658 .258 .700 .458 .816 .416 .758 .716
i (.546) ( .142) ( .780) ( .243) ( .650) ( .240) (.705) ( .445) (.799) (.413) ( .746) (.703 )
;

6 I .542 .141 .780 .241 .689 .287 ·701 .1+88 .841 .440 .771 .741
i (.547) ( .139 ( .783) ( .241) ( .680) ( .279) ( .701) ( .479) ( .847) ( .451) ( .772) (.748)
I

7 I .618 .125 .810 .249 .744 .252 .746 .498 .872 .379 .809 .749i (.627) ( .136) ( .805) ( .259) (.742) ( .251) ( .746) ( .496) ( .864) (.369) ( .806) (.740)

8 ! .570 .125 ·799 .236 .704 .258 .723 .481 .847 .401 .785 .735
! (.552) (.108) ( .807) ( .219) ( .687) (.21~11) (.722) ( .1+65) (.887 ) ( ,l~38) ( .806) (.775)

Average i .565 .128 ·795 .237 .700 .263 .719 .482 .845 .408 .782 .735
I (.571) ( .132) (.794) ( .241) (.685) ( .247) ( .719) ( .466) ( .855) ( .421) ( .786) ( .746)
I



experiment and prefer to treat his data only after he Glearly understands

the experimental routine and is well experienced. Also, the first 100 trials

of each of the subsequent experimental sessions were deleted because, as

noted earlier, we shall confine the analysis to asymptotic performanGe.

In this experiment the signal and noise levels were Gonstant over all

sessions and only the presentation sGhedule varied. Therefore, cr should

be fixed throughout the experiment, but Poo should vary with changes in y.

It has already been shown that in theory hits and false alarms should fallon

me straight line

Pr(H) = cr + Pr(F) •

We now wish to fit this equation to the three data points corresponding to

presentation schedules A, B, and C. Figure 1 presents plots of Pr(H) and

Pr(F) for individual subjects. In order to fit the above equation to the

three points for a given subject, we use the method of least squares; i.e.,

we select the value of cr so that it minimizes the sum of squared deviations

between observed values and those predicted by the above equation. Applying

the least squares method yields the estimates of cr that are given in Figure

1; these estimates were used to generate the ROC curves displayed in the

figure. By inspection of the figures we see that there is good agreement

between the observed data points and the predicted ROC curves. Recall that the

signal and noise levels were set at the same values for all subjects and con

sequently variations in cr represent inter-subject variations in sensitivity

level. The maximum sensitivity ·level is displayed by Subject 7, with

cr = .492; whereas the minimum sensitivity level is displayed by Subject 5,

with cr

We now evaluate the bias process with regard to the data presented in

Table 1, First, however, note that if y and cr are fixed in Eq. 12 and
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1.08

•

Subject 8
cr = .445
'l' = 1.148

Subject 4
cr = .402
<p = 1.238

Subject 6
cr = .402
<p = 1.083

Subject 2
cr = .418
'l' = 1.219

.6.4.2o.8

Subject 3

u = .491
<p = 1.265

Subject 1

cr = .447
'I' = .860

.6.4.2o

.2

.4

.8

.6

o

1.0

.8

.6

.4

.2

0

,8

.6

.4

.2

Pr(H) 0

.8

.6

.4

.2

0

Pr(F)

Figure 1. Observed and predicted values for Pr(H) and Pr(F)
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~ is varied from 0 to 00, then the point [Pr(F), Pr(H)] moves along an

ROC curve and approaches the lower-left point (0,0) as ~~OO, and the

upper-right point (1-0,1) as ~ ~O. Stated differently, no matter where

the point may fallon the ROC curve (for fixed values of 1 and 0), there

exists a corresponding value of ~. Hence, if the three observed points

[Pr(F), Pr(H)] in our experiment fallon a straight line with slope 1, then

perfect fits of the data can be obtained by estimating separate values of ~

for each presentation schedule.

Performing separate estimates of ~,however, would violate our original

intentions. In formulating Eq. 9 it was assumed that the parameters e and

e' characterize a subject's trial-to-trial adjustments to stimulus and informa-

tion events, and do not depend on the overall presentation schedule. The

values of e and e' may vary from subj.ect to subject reflecting individual

differences; however, for a given subject e and e' are assumed to be

fixed and invariant with regard to the presentation schedule and .the signal

intensity. Earlier we required that 0 be independent of the presentation

schedule, and now the same constraint is placed on ~. Thus for each subject

we want a single estimate of ~ which then can be used to make predictions

for all three presentation schedules.

To obtain an estimate of ~ we use the observed proportion of Al

responses given in Table 1. Eq. 14 gives the theoretical expression for

Pr(Al ); solving for ~ yields

1(1-0') _1
1 - I

For each presentation schedule we have substituted the estimated value of 0

and the observed value of Pr(A
l

) in the above equation to obtain an estimate

of ~. For example, for SUbject 1, 0 = .447, ·Pr(Al ) = .27b, and 1 = .25
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on schedule A; hence substituting in the above equation yields ~A = .777.

To obtain an overall estimate of qJ for each subject we have

Similarly qJB

and Pr (AI) •

and
A

qJc can be computed using the appropriate values of

taken the average of the three estimates; namely

A l[A A A]
qJ = 3" qJA + qJB + qJc

The various estimates of
A

qJ are presented in Table 2. Note that the value

of
A

qJ averaged over subjects is somewhat greater than one, indicating that

e' > e. The interpretation of this result is that the E2 event has a

slightly greater effect on increasing the probability of an A2 response

than the El event has on increasing the probability of an Al response.

Using the estimates of a and qJ, predictions can be computed for

PdH) , Pr(F), pdc), and Pr(Al ) from Eqs. 12-14. These predicted values

and the corresponding observed quantities are presented in Table 1. Also in

Fig. 1 the predicted and observed values of Pr(H) and Pr(F) are plotted

in the ROC space. In this figure the predicted point for each presentation

schedule is at the intersection of the computed iso-bias curve and the ROC

curve.

By and large, the correspondence between predicted and observed values

is very good. Only Subject 8 shows a systematic discrepancy between predicted

and observed quantities. For this subject ~ = 1.148 and hence Pr(Al )

should be about .236 for schedule A and about .735 for schedule C. However,

what we observe is that Pr(Al ) overshot its predicted value ;for:.schedule C

and went below its predicted value for schedule A. To a degree, this subject's

performance deviated from the theoretical values in the direction of optimiz-

ing the probability of a correct response. Specifically, consider the func-

tion for the probability of a correct response; namely

Pr(C) = a + (I-aX J'p + (1-)') (l-p)]. For a fixed a, to maximize this

18
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i

Table 2

Estimates of cP

A A A A

Subject cP rpA CPB CPe

1 .860 ,;777 1.099 ,705

2 1.219 1.162 1.400 1.096

3 1.265 1.155 1.390 1.251

4 1.238 1.324 1.446 .945

5 1.329 1.065 1.449 1.472

6 1.083 1.085 1.147 1.018

7 1.016 .914 1.028 1.105

8 1.148 1.384 1.284 .775

Average 1.145 1.108 1.280 1.046
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function the subject should set the bias parameter as follows:

=c:
if

1
y >-

2
P

if
1

y <-
2

When 1
Y = 2 any value of p yields a maximum. If a subject adopted the

strategy specified by the above equation, then the ROC curve would reduce

to three points; one at (0, a) for 1
y < 2' another at (I-a, 0) for

y >~, and a third point for the presentation schedule where The

behavior of Subject 8 tends to move away from the theoretical predictions

in the direction of ma:ldmization, but of course to nowhere near the extent

indicated by the above equation. It is our contention that if monetary

payoffs for correct responses and penalties for incorrect responses were

introduced into the experimental situation, then more subjects would tend

to deviate from the theoretical values, the deviation being in the direction

of optimization. Thus, under conditions of monetary payoff the model would

have to be generalized to account for such effects. We shall return to a

discussion of this point later.

Time-order Effect

In the forced-choice detection task the terminology time-order effect

is used to refer to the fact that subjects generally are more accurate in

detecting signals embedded in the second observation interval than in the

first intervaL For example, on schedule B (which has Sl and S2 events

occurring equally often), every subject had a higher probability of being

correct when the signal was in the second interval than in the first interval;

two possible explanations for this time-order effect. One is that the bias

parameter tends to favor the A2 response. Hence when sensory state So
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is activated, the subject makes the A2 response more frequently, which

insures that he will have a higher probability of being correct on S2 than

on Sl' Another possibility is that the time-order effect occurs because

the sensitivity level changes from one observation interval to the next;

specifically, that there are two sensitivity parameters and

associated with the two intervals and that 02 > 01'

Thus a time-order effect can be accounted for by postulating a bias

process that tends to favor the A
2

response, or by postulating a sensory

mechanism that is more sensitive to stimuli presented in the second observation

interval. The first argument explains the time-order effect in terms of the

decision process, whereas the second accounts for the effect in terms of the

activation process. Both of these explanations are tenable and one would

like to have some rationale for selecting between them. Fortunately the model

makes quite different predictions depending on which process is used to

account for the time-order effect. If the explanation is in terms of the

bias function (as was the case in our analysis of these data) then the ROC

curve has slope 1 and the time-order effect is simply due to the fact that

~ > 1. If, however, the effect is explained in terms of different sensitivity

levels, then

Pr(H) 01 + (l-ol)P

Pr(F) ~ (1-02)P

Under these conditions the ROC curve is

1 - °
Pr(H) ~ 1 _ 0

1
Pr(F) + 01 .

. 2

If 02 > 01' then the slope of the ROC curve is greater than one. Thus to

decide whether the time-order effect is due to the bias process alone, or

whether it also may be due to differential sensitivity levels, we must ask
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whether the ROC curve h~s slope greater than one. One can see by inspection

of Fig. 1 that for our subjects there is no evidence (except possibly for

Subject 2) to suggest that the observed points would be better fit by a line

with slope greater than one. Therefore, for this experiment, the conclusion

is that the time-order effect is due to the bias process, and cannot be ex

plained by changes in sensitivity over the two observation intervals.

IV. Blank Trials and False Information

In this section we consider two modifications of the typical forced

choice detection task. One involves the introduction of bl~nk trials, and

the other the use of false-inform~tion feedback. By blank trials we mean

that on occasion a trial will occur on which the signal has been omitted

entirely; the subject is not told that blank trials ~re being introduced

and (because of the forced-choice nature of the task) continues to make Al

and A2 responses. A blank trial will be denoted as SO' By false-informa

tion feedback we me~n that on some trials the subject will be told th~t a

signal occurred in a particul~r observation interval when in fact it did not.

The introduction of these two modifications in the detection task permits

us to make some very sharp predictions that differentiate this model from

several others with similar assumptions.

In the study to be analyzed, the subject was given the s~me instructions

th~t were used in the other experiment; i.e., he was led to believe that ~

signal would occur on every tri~l and that the information events reli~bly

indic~ted the interval in which the sign~l occurred. Actually, however,

the presentation schedule involved Sl' S2 and So type trials; on Sl

tri~ls ~n El always occurred, on S2 trials an E2 ~lw~ys occurred, and

on So trials sometimes El occurred and sometimes E2 • The presentation

schedule used in this study c~n be characterized by the parameters Y, n,
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and x as follows: (a) with probability xy a signal was presented in the

first interval and, after the response, El occurred, (b) with probability

x(l-y) a signal was presented in the second interval and followed by E2 ,

and (c) with probability 1- x a blank trial was presented and an El

occurred with probability 1l and an E
2

event with probability 1-1l.

Thus, the probability of presenting a signal in the first interval was xy;

but the probability of telling the subject that·the signal occurred in the

first interval was

Pr(El ) = xy + (l-x)1l .,n

Similarly, the probability of presenting the signal in the second interval

was x(l-y); however, the probability that the subject was told that the

~gnal occurred in the second interval was

Pr (E ) = x(l-y) + (I-x) (1-1l)
2,n· ...

The model generalizes directly to this experiment. No new assumptions

are necessary; we need only apply the axioms and carry out the appropriate

derivations. First of all, consider the activation matrix for this experi-

ment. In terms of the assumptions

So sl s2

Sl I-a a 0

A* = S2 I-a 0 a
~

So 1 0 0

Using the matrix A*- and the decision matrix D
-n

specified by Eq. 5, we can

derive a performance matrix P*
-n

whose rows are the events

and whose columns are the responses Al and A2 . The entries in the first

column of the matrix P* are
-n
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Pr(H ) Pr(Al ISl ) o + (l-a)p (15a)n ,D ,D n

Pr(F ) Pr (Al IS2 ) (l-a)p (15b)
n ,D ,ll n

Pr(Al ISo ) Pn • (15c)
,D ,D

By inspection of Eqs. 15a and 15b, it is clear that the ROC curve is the

same as one given in Eq. 7 for the no-blank trial case. Also, from Eqs. 15a

and 15c it follows that the function relating Pr(H )
n

and Pr(Al Iso )
,D ,D

is a straight line with slope 1 - 0 and intercept 0', namely,

Pr(H ) ~ 0 + (l-O)Pr(Al ISo ) (16)n ,no ,D

Now let us derive an expression for the response bias. Eq. 9 presents

the axioms describing possible changes in Pn' These axioms are directly

applicable to the experiment involving blank trials and false-information

feedback. Given Eq. 9, we need only to compute the probability of the events

(so & El ) and (so & E2 ) •
,D ,D ,D ,D

The tree in Fig. 2 describes the possible ~vents that can occur in a given

trial. From the figure we obtain

Pr(so & El ),n ,D

and

xy(l-o) + (l-x)rr

Pr(so &E2 ) ~x(l-y)(l-a) + (l-x)(l-rr).
,D ,D

Given these results we can now derive E(Pn)' We shall not carry out the

derivation, for it involves precisely the same arguments that were employed in

developing Eq. 10. Invoking these arguments yields the following equation:

E(p ) ~ P - [p - Pl]Gn-
l

•n 00 00

Here

G 1 - e[xy(l-o) + (l-x)rrJ - e'[x(l-y)(l-a) + (l-x)(l-rr)J ,

and

[xy(l-a) +
XY(l-Ot + (l-x)rr

23
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~_-=.x(:.:l:...-..!.Y..:.)__S2

so

Figure 2. A tree describing possible events and their

related probabilities for the blank-trial

experiment
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where e'cp ~ -.e
Empirical Analysis

We now examine some data from a forced-choice detection experiment that was

run using presentation schedules involving blank trials and false-information

feedback. The same experimental procedures were employed in this study as in

the earlier one except for tile pretraining phase. Pretraining lasted three

days and involved running each subject on the schedule B routine used in the

first experiment (during pretraining, a signal always occurred in one of the

two observation intervals, information feedback was reliable, and I ~ .5).

The signal intensity was held fixed throughout ,the experiment, but the experi-

menter manipulated the noise level during pretraining in an attempt to establish

a signal-to-noise ratio for each subject that yielded a correct response per-

centage of approximately 79; the theoretical rationale for selecting this

particular value will be given later. The manipulation of the noise level was

rone strictly by trial and error, but the procedure proved to be quite successful

for by the end of pretraining a level had been established for each subject

that yielded a correct response probability fairly close to the desired value

of .79. During the remainder of the experiment the noise level was fixed for

each subject at the value determined during pretraining. Also, during pre-

training any subject who tended to strongly favor one response over the other

was eliminated from the experiment. Only subjects whose overall proportion of

Al responses was between .40 and .60 for the second and third days of pre-

training were included in the main experiment. Four subjects from a group

of 18 were eliminated on this basis. Since 1
2

during pretraining, this

selection procedure guaranteed that cp would be in the neighborhood of one

for all subjects.
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Pretraining, therefore, involved two special features: (a) noise levels

were determined individually for each subject, and (b) subjects were eliminated

from the experiment who showed a strong preference for Dne of the response

alternatives. The first requirement guaranteed that the sensitivity param

eter cr was approximately the same for all subjects. The second insured that

~ was fairly close to 1 for all subjects. ThUS, in a rough sense, a homo

geneous group of subjects was formed by using this pretraining procedure;

homogeneous in the sense that all subjects were characterized by approximately

the same values of cr and ~.

In the experiment proper, four presentation schedules were used. The

probability x of a signal trial was .50 for all schedules, but the schedules

differed in the values of y and rt as follows:

Schedule A':

Schedule B':

Schedule C':

Schedule D':

y .25,

y ~ .75,

y ~ .25,

y ,75,

rr .25

rr ~ .25

rr .75

rr - .75

Test sessions of 400 trials were run on consecutive days. Each day a subject

ran on one of the above presentation schedules for the entire session. In

successive 4-day blocks a subject completed one day on each of the four

schedules; within each 4-day block the order of schedules was randomly

determined. The experiment involved 20 test sessions and therefore each

schedule was repeated on five separate days.

Table 3 presents the observed average proportion of Al responses con

ditionalized on the various trial types; these averages are based on 14

subjects. Proportions were computed for each subject based on the last 350

trials of replications two through five of a given presentation schedule;

thus the estimates for each subject are based on a sequence of 4 x 350 ; 1400
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Table 3

Observed and predicted values

for the blank-trial study

Schedule A' Schedule E' Schedule C' Schedule D'

Obs. Fred. Obs. Fred. Obs. Fred. Obs. . Fred.

Fr(H) .641 .672 .755 .734 .820 .820 .903 .886

Fr(F) .086 .100 .17 4 .162 .227 .248 .344 .314

Fr(All SO) .213 .234 .401 .378 .553 .578 .765 .733

Fr (A
l

) .219 .238 .505 .485 .464 .484 .764 .738
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trials. The averages of these individual subject proportions are the quantities

presented in the table. Although data were analyzed on an individual subject

basis in the first experiment, there are at least two justifications for

presenting group averages now. One reason is that it greatly simplifies

the analysis, and the second is that there is a theoretical rationale for

treating group data in the present experiment. The rationale is based on the

pretraining procedure, which was designed to insure that both cr and ~

would be approximately the same for all subjects. By inspection of Eqs. 15

rod 17 we see that the asymptotic expressions for Pr(H), Pr(F) and Pr(Allso)

depend on only cr and ~. If cr and ~ are identical for all subjects,

then the theory makes the same predictions for the group average as for

individual subjects.

Figure 3 presents plots of the observed values of Pr(H) and Pr(F)

as given in Table 3. The theory predicts that these points should fallon a

linear curve with slope 1 and intercept cr. We estimated cr \from these four
,

data points by using the method of least squares and obtained

a ~ .572.

This estimate was used to generate the straight-line ROC curve displayed in

Fig. 3. The four observed points (one from each schedule) fall quite close to

the predicted line.

Figure 4 presents a plot of Pr(AlISO) versus Pr(H). As indicated

in Eq. 16, these points should be related by a linear function with slope 1- cr

and intercept cr. Using our estimated cr, we generated the straight line in

Fig. 4. Once again the linear relation seems to be reasonably well supported.

In order to make numerical predictions for Pr(AlISi)(i ~ 0, 1, 2) we

need an estimate of ~. Estimation of this parameter is attained using the

same method employed earlier. The overall ])robability of an Al response is
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Figure 3. Observed and predicted values for Pr(H) and Pr(F)
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Pr(Al ) = x)'Pr(All Sl) + X(l-)')Pr(All S2) + (l-x)Pr(All So)

= ax)' + (l-ax)p
00

(18)

Substituting in the expression for Poo given in Eq. 17 yields an expression

in 'p. For each presentation schedule we have subs.tituted the estimated value

of a and the observed value of Pr(Al ) in the above equation and solved

for cp. For example, for schedule A' the observed value of Pr(A
l

) is .219;

letting
A

a .572, )' = .25, in the above

equation yields CPA' = 1.281. Similarly, for the other three sChedules we

obtain CPB' = .969, CPc' = 1.229, and iPn, = .897. It is interesting to

note that Acp seems to be correlated more with )' than wi th 1(. Schedules

A' and C' (y = .25) both yield cP> 1, whereas schedules B' and D' (y = .75)

yield cp < 1. Recalling that cp 9'
9

and that )' is the probability of a

sigpal in the first interval (if there is a signal)" these estimates suggest

that 9' > 9 if the probability of the signal being in the second interval

exceeds Hence the change in the bias parameter seems to be somewhat

dominated by the interval with the higher probability of bracketing the

signal. Despite this suggestion of a departure from independence of the

parameters cp and )', very little damage is done to the accuracy of the

model's predictions, as will be seen shortly.

To obtain an overall estimate of cp we have taken the average of these

four values:

A l(A
cp = 4" CPA'

= 1.094

+ iPn,)

Using the estimates of (5 and cp,Eqs. 15 and 17 can now be used to

generate predictions for Pr(H) , Pr(F), Pr(AIISO) and Pr(Al ). These

predicted quantities are given in Table 3; they also are graphically displayed

in Figs. 3 and 4 as cross marks on the appropriate line segments. It should



be pointed out that there are no constraints on the'relations among the
<

quantities Pr(AIISl), Pr(AIIS2) and Pr(AIISo)' and therefore twelve

independent predictions are being made on the basis of two parameters. One

need only inspect the array of observed and predicted quantities to realize

that the correspondence between theoretical and observed values is quite satis-

factory.

Recall that for both schedules B' and C' the E
l

and E2 events occurred

equally often; i,e., on both schedules the subject was being told (via the

trial-to-trial feedback) that the signal was occurring equally often in the

two observation intervals. However, actually, the signal occurred more

frequently in the first interval for schedule B' than for schedule C'. These

experimental manipulations are clearly reflected in the data. On an So

trial the probability of an Al response was greater for schedule C' than for

schedule B' (.553 vs ..401), whereas over all trials the probability of an Al

response was greater for schedule B' than for schedule C' (.505 vs .•464).

Both of these relations are predicted by the model.

V. Sequential Effects

So far, our analysis has been restricted to fairly gross aspects of the

data. However, the mcdel provides a deeper analysis of the experiment than the

foregoing results indicate. From the model we can predict not only hit and

false alarm rates but also the sequential properties of response protocols.

In terms of the axioms, sequential effects in the observable response events are

produced by trial-to-trial fluctuations in Pn' Such fluctuations, of course,

can take place on any trial and are not restricted to pre-asymptotic data. For

example, even at asymptote the likelihood of making a correct response to an

Sl stimulus depends in a very definite way on whether an El or an E2

occurred on the preceding trial.
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The sequential effects of particular interest deal with the influence of

stimulus and response events on trial n as they affect the response on trial

n + 1; specifically

Pr (Al 11 8. lA. 8k ) •,n+ l,n+ J,D ,D

However, we shall not examine the correspondence between these particular

sequential effects and theoretical predictions, because there are 18 such

independent quantities for each experimental conditions and the analysis would

involve too much detail. Rather, we shall consider Pr(Al,n+lIEl,n) and

Pr(Al llE2 ). Note that for these probabilities the stimulus events on
,n+ ,D

trials nand n + 1 are suppressed, and we only ask for the overall like-

lihood of an Al response conditionalized on the information event of the

preceding trial. The Al could occur in response to any of the stimulus

Asymptotic expressions for these quantities can be readily

could follow an 8
1

or 8
0

stimulus, and the E2 an 82

events 8
1

, 82 ,

El on trial n

or 8
0

stimulus.

or on trial n +1'. , similarly the information event

obtained (see Atkinson, Bower, and Crothers, 1965) and are as follows:

lim Pr(Al l!El. ) = Pr(Al )n ~ co ,n+ ,n
+ (l-ox)e(l- ) rt(l-x) + xY(l-o)

Poo rt (l-x) + xy
(19)

lim Pr(Al liE ) = Pr(Al ) - (l-ox)e'pn :-700 ,D+ 2,n co

(l-rt)(l-x) + x(l-y) (1-0)
(l-rt) (l-x) + x(l-y)

where Poo is given by Eq. 17 and Pr (Al ) by Eq. 18,

Table 4 presents the observed values for Pr(Al llEl );n+ ,n
and

Pr(A
l

llE
2

). Estimates of these quantities were obtained for individual
,n+ ,D

subjects; the average of these estimates are the quantities presented in the

table. These estimates are based on the same set of trials as the data pre-

sented in Table 3 and therefore will be regarded as asymptotic. We can now

use the above equations to yield predictions for these observed values. By
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inspection of these equations, we see that values are needed for cr, 8, and

8' in order to make numerical predictions. Since estimates of cr and

8'
~ ~ 19 have already been made, it is only necessary to estimate either 8'

Suppose we fix on some value of 8' ., then 8 is determined because

8'
8

must equal the previous estimate of For a fixed 8' pre-

dictions can be calculated for the eight statistics displayed in Table 4;

these calculations are made for each experimental schedule by substituting the

appropriate values of y and ~ in the above equations, along with cr ~ .572,

8'
~ ~ 1.094, and 8 ~ 1.094. Once numerical predictions have been generated

for a particular value of 8', an evaluation of the goodness-of-fit can be

made by computing the sum of squared deviations between pr,edicted and ob-

served values; i.e., for a specific value of 8' define the quantity

S(8') ~ (predicted-observed)2

where the sum is over the 8 entries in Table 4.

One method for estimating 8' is to select its value so as to minimize

S(8'). To carry out this minimization analytically yields unwieldy expressions,

and to avoid this complication we have simply calculated S(8') for 8'

ranging from .01 to 1.0 in successive increments of .01. Over this range of

values the function S(8') takes on its minimum when 8' ~ .08. This value

of 8' generates the predicted quantities in Table 4.

~ and large the correspondence between predicted and observed sequential

statistics is reasonably good. In evaluating the goodness-of-fit it should be

kept in mind that all of the quantities in Table 4 are independent, and thus

there are 8 degrees of freedom. The model requires that Pr (Al 11 El > Pr (Al ),n+ ,n

> Pr(Al llE2 ), and this relation is supported by all four sets of data.,nt ,D
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Table 4

Observed and predicted sequential quantities

for the blank-trial study

Schedule A' Schedule B' Schedule C' Schedule D'

Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred.

lim Pr (A
l

11 E
l

' ) .255 .267 .529 .503 .475 .503 .784 .748n ...-7 co ,D+ ,D

lim Pr(Al llE2 ) .207 .229 .482 .466 .453 .466 .716 .708n -7 00 ,n+ ,D
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Also the model requires that

Pr(Al .11 81 lEI ),u+ ,u+ ,D

Pr(Al 1182 ·lEl ),D+ ,u+. ,D

pr(Al ,n+1180,n+lEl,n)

> Pr(Al · 1181 lE2 ),D+ ,D+· ,D

> Pr(Al 1182 lE2 ),n+ ,n+ ,D

> Pr(Al n+l180 n+lE2 n), , ,
Although not presented here, a breakdown of the data into this form indicates

that these inequalities hold over all four experimental conditions.

VI. Alternative Models

An alternative model for the bias process that initially appealed to us

involved trial-to-trial changes in Pn that were determined solely by the

information events E and E2 • Formally stated, the idea was that1 {,-,J," + , , if E
l,n

Pn+l
(1-8')p , if E

n 2,n

Tills formulation (which will be called Model II) is to be contrasted with

Eq. 9 (Model I), where changes in Pn can occur only when sensory state So

is activated. In spite of the marked difference between these two sets of

assumptions, the models yield identical predictions in the first experiment

for the asymptotic probabilities ofPr(H), Pr(F), Pr(A
l

) and Pr(C).

Only by a detailed analysis of sequential statistics and pre-asymptotic data

can it be shown that Model I is slightly better than Model II.

However, the two models make strikingly different predictions in the

false-information study even for asymptotic hit and false alarm proportions.

For example, applying Model II to the false-information study yields

. xy + (l-x)rr
Pro ~ [xy + (l-x),rl + [x(l-y) + (l-x)(l-rr)]cp

By inspection of this equation, we see that Pro is identical for both

schedules. B' and C' of the second experiment; whereas, using Model I, Pro

is greater for schedule C' than for schedule B'. This relation, of course,
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is reflected in Pr(H) and Pr(F). For Model II, Pr(H) and Pr(F) will be

the same for both schedules B' and C'; whereas for Model I both Pr (H)

and Pr(F) will be greater for schedule C' than for schedule B'. The order

ing relation predicted,by Model I for schedules B' and C' is borne out by the

group averages presented in Table 3; it also is the case that the relation

holds individually for all 14 subjects. Therefore Model I, but. not Model II,

appears substantiated by the data.

To further illustrate the relations between Models I and II in the false

information study, we have presented iso-bias curves in Fig. 5; the curves

were plotted for ~ ~ 1. By inspection of the figure we see that the iso-bias

curve for Model II is a straight line for all four presentation schedules,

and the iso-bias curves for schedules B' and C' are identical. For Model I,

the iso-bias curves for schedules A' and D' are the same as for Model II;

however, under the assumptions of Model I schedules B' and C' generate dif

ferent, nonlinear curves.

Adopting Model I, a distance function can be defined between corresponding

points on the iso-bias curves for schedules B' and C'. The maximum of this

function can be obtained by taking its derivative with respect to 0 and

setting the result equal to zero. Carrying out these operations yields

o ~ 2 - /2 '" .59 .

Therefore, under the assumptions of Model I, the maximum difference between

corresponding points on the iso-bias functions of schedules B' and C' will be

observed when 0 is approximately .59.

One of the principal reasons for running the false-information study

was to determine whether such a difference would be observed. Therefore, to

maximize the likelihood of discovering an effect if it existed, we wanted to

set the noise level at a value corresponding to a 0 of .59. Recall that
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pretraining involved only 8
1

and

equal likelihood; hence Pr(C) = 0

82 trials,and they were presented with

1+ (1-0)2' Consequently to fix 0 at

approximately .59 required adjusting the noise level during pretraining to

yield a correct-response probability of approximately ,79 ~ .59 + (.41)~.

The pretraining procedure was fairly successful, inasmuch as the estimate of 0

during the actual experiment was .572.

VII. Concluding Remarks

The applications of the model presented here have been confined to

symmetric outcome structures involving no paYoffs. If we were to generalize

the model to situations involving manipulation of monetary payoffs then it

would be necessary to offer a more complex theory of the decision process.

Obviously there are outcome structures that will displace the subject's data

point off the linear ROC curve specified by Eq. 7.2 For example, consider

the following payoff matrix:

Al

8
1 [-1

-"1008
2

In this case the subject is heavily rewarded for incorrect detection responses

and penalized for correct responses. Hence over time the subject would un-

doubtedly generate a point [Pr(F), Pr(H)] that fell in the lower right-

hand sector of the ROC space. That is, the probability of a false alarm would

exceed the probability of a hit for this outcome structure. It is important

to,note that such effects cannot be predicted merely by generalizing the

2In fact, even for experiments discussed here, it is lik~ly that the

observed point [Pr(F), Pr (H) ] will fall below the predicted ROC curve when

y is close to zero or one (Atkinson, 1963).
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assumptions governing No matter how is permitted to vary, the

model still requires that performance points fallon a linear curve with

intercept a.

Of course, several modifications of the theory seem able to account for

experimental manipulations that generate performance points off the ROC curve.

One approach is to develop a more elaborate conceptualization of the decision

process. For example, one can replace the D matrix of Eq. 5 with the matrix
~n

A
l

A
2

So Pn l-pn

D sl
d (1) l_d(l)

-n n n

s2
l_d(2) d(2)

n n

For this process experimental manipulations of the outcome structure might not

but also the values ofonly affect Thus, depending on the postu-Pn

lated relation of

d (i) .
n

to the outcome structure, it would be possible to

generate virtually any ROC curve. Of course, when this type of modification

is introduced one obtains a model that is very close in structure to those

proposed for discrimination learning (Atkinson and Estes, 1963, p. 238; Bush,

Luce and Rose, 1964). Another possible modification of the detection model

would be to develop a more general formulation of the sensory process. Pur-

suing this line, we might assume that the subject's sensitivity level could

vary within certain limits as a function of the outcome structure and other

variables.

Both of these alternatives represent potential lines of theoretical develop-

ment for models of this type. They raise an important question: Can changes

in performance induced by manipulation of the outcome structure be explained by

elaborating the theory of the bias process, or do they also necessitate



postulating a more complex sensory mechanism? Developments of this sort

are fairly complex and go beyond the scope of this paper.
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